Ufd1-Npl4 Recruit Cdc48 for Disassembly of Ubiquitylated CMG Helicase at the End of Chromosome Replication
نویسندگان
چکیده
Disassembly of the Cdc45-MCM-GINS (CMG) DNA helicase is the key regulated step during DNA replication termination in eukaryotes, involving ubiquitylation of the Mcm7 helicase subunit, leading to a disassembly process that requires the Cdc48 "segregase". Here, we employ a screen to identify partners of budding yeast Cdc48 that are important for disassembly of ubiquitylated CMG helicase at the end of chromosome replication. We demonstrate that the ubiquitin-binding Ufd1-Npl4 complex recruits Cdc48 to ubiquitylated CMG. Ubiquitylation of CMG in yeast cell extracts is dependent upon lysine 29 of Mcm7, which is the only detectable site of ubiquitylation both in vitro and in vivo (though in vivo other sites can be modified when K29 is mutated). Mutation of K29 abrogates in vitro recruitment of Ufd1-Npl4-Cdc48 to the CMG helicase, supporting a model whereby Ufd1-Npl4 recruits Cdc48 to ubiquitylated CMG at the end of chromosome replication, thereby driving the disassembly reaction.
منابع مشابه
The AAA-ATPase Cdc48/p97 Regulates Spindle Disassembly at the End of Mitosis
Spindle disassembly at the end of mitosis is a complex and poorly understood process. Here, we report that the AAA-ATPase Cdc48/p97 and its adapters Ufd1-Npl4, which have a well-established role in membrane functions, also regulate spindle disassembly by modulating microtubule dynamics and bundling at the end of mitosis. In the absence of p97-Ufd1-Npl4 function, microtubules in Xenopus egg extr...
متن کاملTethering of SCFDia2 to the Replisome Promotes Efficient Ubiquitylation and Disassembly of the CMG Helicase
Disassembly of the Cdc45-MCM-GINS (CMG) DNA helicase, which unwinds the parental DNA duplex at eukaryotic replication forks, is the key regulated step during replication termination but is poorly understood. In budding yeast, the F-box protein Dia2 drives ubiquitylation of the CMG helicase at the end of replication, leading to a disassembly pathway that requires the Cdc48 segregase. The substra...
متن کاملRole of the ubiquitin-selective CDC48(UFD1/NPL4 )chaperone (segregase) in ERAD of OLE1 and other substrates.
The OLE pathway of yeast regulates the abundance of the ER-bound enzyme Delta-9 fatty acid desaturase OLE1, thereby controlling unsaturated fatty acid pools and membrane fluidity. Previously, we showed that this pathway is exquisitely regulated by the ubiquitin/proteasome system. Activation of the pathway involves proteasomal processing of a membrane-bound transcription factor and the subsequen...
متن کاملShp1 and Ubx2 are adaptors of Cdc48 involved in ubiquitin-dependent protein degradation.
Known activities of the ubiquitin-selective AAA ATPase Cdc48 (p97) require one of the mutually exclusive cofactors Ufd1/Npl4 and Shp1 (p47). Whereas Ufd1/Npl4 recruits Cdc48 to ubiquitylated proteins destined for degradation by the 26S proteasome, the UBX domain protein p47 has so far been linked exclusively to nondegradative Cdc48 functions in membrane fusion processes. Here, we show that all ...
متن کاملStructural insights into the p97-Ufd1-Npl4 complex.
p97/VCP (Cdc48 in yeast) is an essential and abundant member of the AAA+ family of ATPases and is involved in a number of diverse cellular pathways through interactions with different adaptor proteins. The two most characterized adaptors for p97 are p47 and the Ufd1 (ubiquitin fusion degradation 1)-Npl4 (nuclear protein localization 4) complex. p47 directs p97 to membrane fusion events and has ...
متن کامل